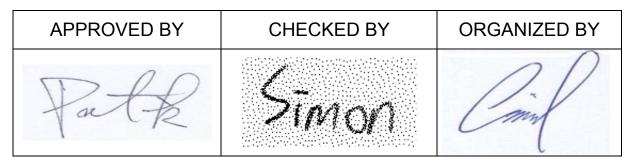


SPECIFICATIONS FOR LCD MODULE


CUSTOMER	
CUSTOMER PART NO.	
AMPIRE PART NO.	AM-240320LGTNQW-00H
APPROVED BY	
DATE	

☑ Approved For Specifications□Approved For Specifications & Sample

AMPIRE CO., LTD.

4F., No.116, Sec. 1, Xintai 5th Rd., Xizhi Dist., New Taipei City 221, Taiwan (R.O.C.)

22181 新北市 汐止區 新台五路一段 116 號 4 樓(東方科學園區 A 棟) TEL:886-2-26967269, FAX:886-2-26967196 or 26967270

RECORD OF REVISION

Revision Date	Page	Contents	Editor
2011/08/19	-	New Release	Rober
2011/09/29	11 12	Redefine PIN 7 SDI Function "Serial bus interface data input/output pin." Redefine PIN 46 GND SDO→GND	Rober
2012/2/1	11	Correct Interface mode	Rober
2014/5/22	6	Add LED life time	Patrick
2015/07/06	7	Corrected the LCM brightness.	Emil

1 Features

LCD 2.4 inch Amorphous-TFT-LCD (Thin Film Transistor Liquid Crystal Display) for mobile-phone or handy electrical equipments.

(1) Construction: 2.4" a-Si color TFT-LCD, White LED Backlight and FPCB.

- (2) Main LCD : 2.1 Amorphous-TFT 2.4 inch display, transmissive, Normally white type, 12 o'clock.
 - 2.2 240(RGB)X320 dots Matrix, 1/320 Duty.
 - 2.3 Narrow-contact ledge technique.
 - 2.4 Main LCD Driver IC: HX8347-D
 - 2.5 262K: Red-6bit, Green-6bit, Blue-6bit (18-bit interface)
- (3) Low cross talk by frame rate modulation
- (4) Direct data display with display RAM
- (5) Partial display function: You can save power by limiting the display space.
- (6) Interface: MPU and RGB Interface. (Select by H/W Jumper). Default : SPI

	JP0(IM	0)	JP1(IM	JP1(IM1)		JP2(IM2)		3)	Remark
Interface mode	R1(H)	R2(L)	R3(H)	R4(L)	R5(H)	R6(L)	R7(H)	R8(L)	
80-16BIT Type I	NC	0R	NC	0R	NC	0R	NC	0R	
80-8BIT Type I	0R	NC	NC	0R	NC	0R	NC	0R	
80-16BIT Type II	NC	0R	0R	NC	NC	0R	NC	0R	
80-8BIT Type II	0R	NC	0R	NC	NC	0R	NC	0R	
3-wire SPI	NC	0R	NC	0R	0R	NC	NC	0R	Default
4-wire SPI	-	-	0R	NC	0R	NC	NC	0R	
80-18BIT Type I	NC	0R	NC	0R	NC	0R	0R	NC	
80-9BIT Type I	0R	NC	NC	0R	NC	0R	0R	NC	
80-18BIT Type II	NC	0R	0R	NC	NC	0R	0R	NC	
80-9BIT Type II	0R	NC	0R	NC	NC	0R	0R	NC	

(7) Abundant command functions:

Area scroll function

Display direction switching function

Power saving function

Electric volume control function: you are able to program the temperature compensation function.

2 Mechanical specifications

Dimensions and weight

Item		Specifications	Unit
External shape dimensions		*1 43.6 (W) x 85.5 (H) x2.8(T)	mm
Main Pixel size		0.153 (W) x 0.153 (H)	mm
LCD	Active area	36.72 (W) x 48.96 (H)	mm
200	Number of Pixels	240(H)x320(V) pixels	mm
Weight		T.B.D.	g

*1. This specification is about External shape on shipment from AMPIRE.

3 Absolute max. ratings and environment

3-1 Absolute max. ratings

Ta=25°C GND=0V

Item	Symbol	Min.	Max.	Unit	Remarks
Power voltage	VDD – GND	-0.3	+4	V	Logic I/O power supply
Power voltage	VCI–GND	-0.3	+4	V	Driver power supply
Power voltage	LED A – LED K	-0.5	+15	V	

3-2 Environment

Item	Specifications	Remarks
Storage temperature	Max. +80 °C Min30 °C	Note 1: Non-condensing
Operating temperature	Max. +70 °C Min20 °C	Note 1: Non-condensing

Note 1 : Ta \leq +40 °C · · · Max.85%RH

Ta>+40 ^{o}C · · · The max. humidity should not exceed the humidity with 40 ^{o}C 85%RH.

4 Electrical specifications

4-1 Electrical	characteristics of LCM	
----------------	------------------------	--

(V_{DD}=3.0V, Ta=25 °C)

Item	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
IC power voltage(Power)	V_{DD}		2.3	2.8	3.3	V
IC power voltage(Logic)	V _{CI}		2.3	2.8	3.3	V
High-level input voltage	V _{IHC}		0.8		V_{DD}	V
Low-level input voltage	V _{ILC}		-0.3		$0.2V_{\text{DD}}$	V
Consumption current of VDD	I _{DD}	LED OFF	-	8	15	mA
Consumption current of LED	I _{LED_ON}	V _{LED} =12.8V	-	20	-	mA

※ 1. 1/320 duty.

4-2 LED back light specification

Item	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Forward voltage	V _f	I _f =20mA	12.3	12.8	13.8	V
Reverse voltage	Vr		-	-	12	V
Forward current	l _f	4-chip serial	-	18	20	mA
Power Consumption	P _{BL}	I _f =20mA	-	256	276	mW
Uniformity (with L/G)	-	l _f =20mA	80%*1	-	-	
Bare LED Luminous intensity	V _f I _f	13.2V 20mA	3700	-	-	cd/m ²
Luminous color	White					
Chip connection	4 chip serial connection					
LED life time		40K hr (E	Estimated	data, Ta=2	25 ℃)	

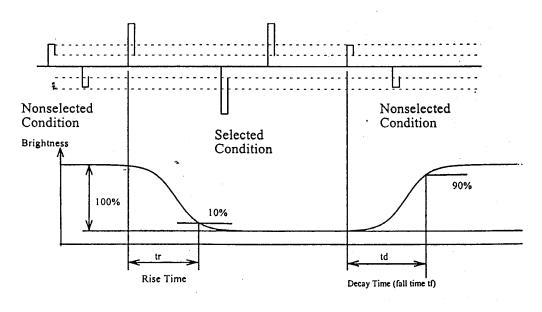
Bare LED measure position:

*1 Uniformity (LT): $\frac{Min(P1 \sim P9)}{Max(P1 \sim P9)} \times 100 \ge 80\%$

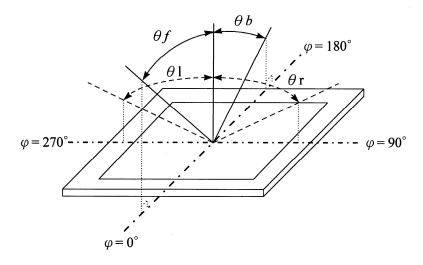
5 Main LCD

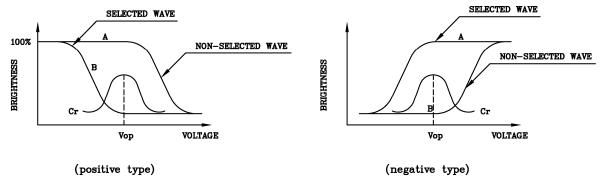

5-1 Optical characteristics

(1/320 Duty in case except as specified elsewhere $Ta = 25^{\circ}C$)

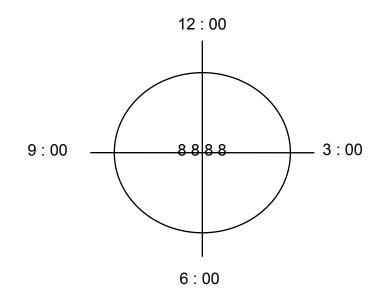

Item	Symbol	Temp.	Min.	Std.	Max.	Unit	Conditions
Response	Tr	25 °C		15	25	me	θ=0 °°, φ=0 °
time	Tf	25 °C		20	30	ms	(Note 2)
Contrast ratio	CR	25 °C	-	200	-	-	θ=0 [°] , φ=0 [°] LED:ON, LIGHT:OFF (Note 4)
Transmittance	Т	25 °C	-	4.7	-	%	
Visual angle range front and rear	θ	25 °C	(θf) 35(20) (θb) 65(45)			De- gree	φ= 0º, CR≧10 LED:ON LIGHT:OFF (Note 3)
Visual angle range left and right	θ	25 °C	(θl) 70(45) (θr) 70(45)		De- gree	ϕ =90°, CR \ge 10 LED:ON LIGHT:OFF (Note 3)	
Visual angle direction priority			12:00			(Note 5)	
Brightness			250	320		cd/ m²	I_F =20mA, Full White pattern

5-2 CIE (x, y) chromaticity (1/320 Duty Ta = 25° C)

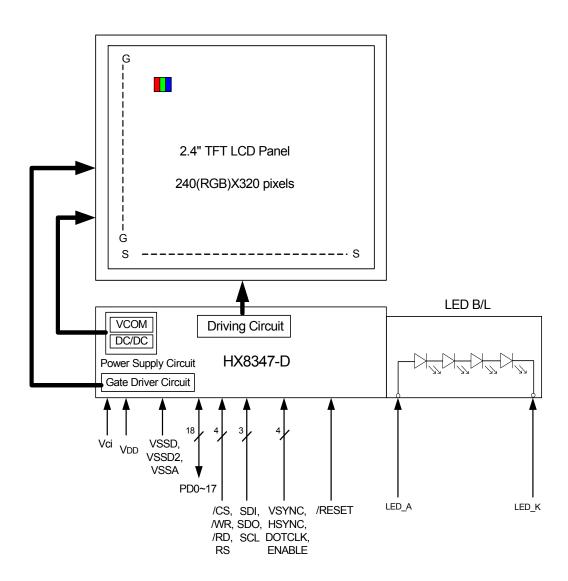

Item	Symbol	Т	ransmissiv	Conditions	
nom	Cymbol	Min.	Тур.	Max.	Conditions
Red	Х	0.55	0.60	0.65	θ=0°,φ=0°
Reu	Y	0.28	0.33	0.38	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Green	Х	0.30	0.35	0.40	θ=0°,φ=0°
Oreen	Y	0.53	0.58	0.63	
Blue	Х	0.06	0.11	0.16	θ=0°,φ=0°
Diue	Y	0.03	0.08	0.13	<i>/</i> 1
White	Х	0.24	0.29	0.34	θ=0°,φ=0°
vville	Y	0.29	0.34	0.39	, T -


NOTE 2: Response tome definition

NOTE 3: $\phi \ \circ \ \theta$ definition



Contrast Ratio : Cr=A/B


NOTE 5: Visual angle direction priority

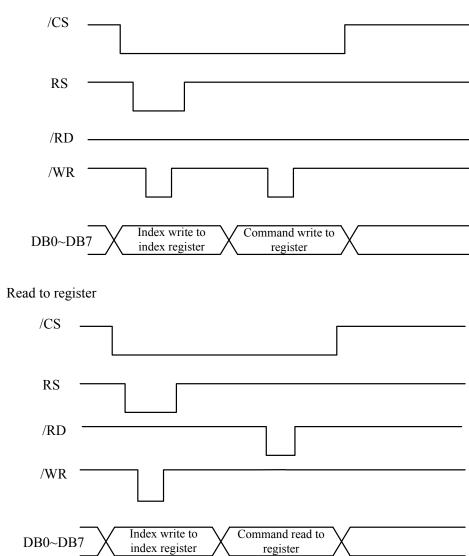
6 Block Diagram

Block diagram (Main LCD)

Display format:A-Si TFT transmissive, Normally white type, 12 o'clock.Display composition:240 x RGB x 320 dotsLCD Driver :HX8347-D

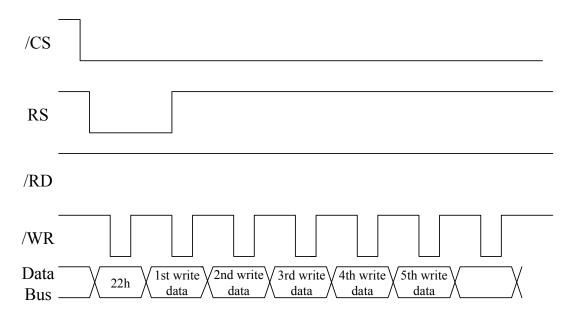
7 Interface specifications

Pin No.	Terminal	Functions
1	ENABLE	A data ENABLE signal in RGB I/F mode.
2	DOTCLK	Dot clock signal in RGB I/F mode.
3	HSYNC	Frame synchronizing signal in RGB I/F mode.
4	VSYNC	Frame synchronizing signal in RGB I/F mode.
5	/CS	Chip select signal.
6	WR/SCL	Write enable signal/Serial bus interface clock input pin.
7	SDI	Serial bus interface data input/output pin.
8	RS	Command/display Data Selection.
9	NC	NC
10	/RD	Read enable signal.
11	/RESET	Reset pin. Setting either pin low initializes the LSI. Must be reset the chop after power being supplied.
12	PD0	
13	PD1	
14	PD2	
15	PD3	
16	PD4	
17	PD5	Mode IM[3:0] PD Pin in use
18	PD6	MCU 18-bit Type I 1000 PD [17:0] MCU 16-bit Type I 0000 PD [15:10]
19	PD7	MCU 9-bit Type I 1001 PD [8:0]
20	PD8	MCU 8-bit Type I 0001 PD [7:0]
21	PD9	MCU 18-bit Type II 1010 PD [17:0] MCU 16-bit Type II 0010 PD [17:10], DB[8:1]
22	PD10	MCU 9-bit Type II 1011 PD [17:9]
23	PD11	MCU 8-bit Type II 0011 PD [17:10]
24	PD12	SDI, SDO, SCL
25	PD13	Serial Mode/Digital RGB Interface Mode0100R[5:0]=PD[17:12] G[5:0]=PD[11:6]
26	PD14	B[5:0]=PD[5:0]
27	PD15	
28	PD16	
29	PD17	
(To be co	ntinued)	

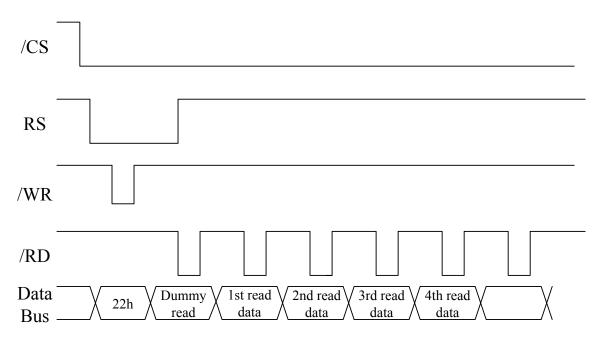

(To be continued)

30	VDD	Power supply for the internal logic circuit. (VDD=1.65~3.3V)
31	VCI	Power supply for Stop up size (1/CI=2.2.2.2)
32	VCI	Power supply for Step-up circuit. (VCI=2.3~3.3V)
33	NC	
34	NC	
35	NC	
36	NC	NC
37	NC	
38	NC	
39	NC	
40	GND	GND-terminal
41	NC	
42	NC	NC
43	NC	NC
44	NC	
45	GND	GND-terminal
46	GND	GND-terminal
47	NC	
48	NC	NC
49	NC	
50	GND	GND-terminal
51	GND	

7-1 Parallel bus system interface


The input / output data from data pins (DB17-0) and signal operation of the I80 series parallel bus interface are listed as below.

Operations	WR/SCL	/RD	RS
Writes Indexes into IR	0	1	0
Reads internal status	1	0	0
Writes command into register or data into GRAM	0	1	1
Reads command from register or data from GRAM	1	0	1



Write to register

Write to the graphic RAM

Read to the graphic RAM

7-2 MCU data color coding

MCU Data Color Coding for RAM data Write

Register	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Command
Command	Х	Х	Х	X	х	X	X	X	×	х	0	0	1	0	0	0	1	0	22H
17H	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBO	Color
	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	R3	R2	R1	RO	G3	G2	G1	G0	4K-Color
03h	Х	Х	Х	Х	Х	Х	х	Х	Х	Х	B 3	B2	B1	BO	R3	R2	R1	RO	(2-pixels/ 3-bytes
	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	G3	G2	G1	G0	B3	B2	B1	BO	(2-pixels/ 0-bytes
05h	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	R4	R3	R2	R1	RO	G5	G4	G3	65K-Color
0311	Х	х	х	X	х	×	Х	х	Х	х	G2	G1	G0	B4	B3	B2	B1	BO	(1-pixel/ 2-bytes
	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	R5	R4	R3	R2	R1	RO	х	X	
06h	×	X	X	X	X	X	X	X	х	×	G5	G4	G3	G2	G1	G0	х	×	262K-Color (1-pixel/ 3bytes)
	x	X	X	X	X	X	Х	X	Х	X	B5	B4	B3	B2	B1	BO	х	X	(1-pixel/ obytes)

- Parallel 8-Bit Bus Interface typel (IM3,IM2,IM1,IM0="0001")

Table 5.3 8-bit parallel interface type I GRAM write table

- Parallel 16-Bit Bus Interface typel (IM3,IM2,IM1,IM0="0000")

Register	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Command
Command	×	Х	Х	х	X	×	×	X	Х	Х	0	0	1	0	0	0	1	0	22H
17H	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Color
03h							R3	R2	R1	RO	G3	G2	G1	G0	B3	B2	B1	B0	4K-Color
05h	Х	Х	R4	R3	R2	R1	RO	G5	G4	G3	G2	G1	G0	B5	B4	B 3	B2	B1	65K-Color
	×	Х	R5	R4	R3	R2	R1	RO	х	х	G5	G4	G3	G2	G1	G0	х	х	262K-Color
06h	×	Х	B5	B4	B3	B2	B1	BO	х	х	R5	R4	R3	R2	R1	RO	х	х	(2-pixels/ 3bytes)
	Х	х	G5	G4	G3	G2	G1	GO	x	х	B5	B4	B3	B2	B1	BO	х	х	
07h	X	Х	R5	R4	R3	R2	R1	RO	G5	G4	G3	G2	G1	G0	B5	B4	B3	B2	262K-Color (16+2
UNI	X	X	х	X	X	X	x	x	х	х	х	X	X	х	Х	х	B1	BO	20211-00101 (10+2

Table 5.4 16-bit parallel interface type I GRAM write table

- Parallel 9-Bit Bus Interface typel (IM3,IM2,IM1,IM0="1001")

Register	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Register
Command	Х	X	Х	X	х	Х	X	Х	Х	X	0	0	1	0	0	0	1	0	22H
17H	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Color
06h	Х	X	Х	X	Х	Х	Х	X	х	R5	R4	R3	R2	R1	RO	G5	G4	G3	262K-Color
0011	×	X	х	X	X	Х	х	х	х	G2	G1	G0	B5	B4	B3	B2	B1	B0	(1-pixels/ 2bytes)

Table 5.5 9-bit parallel interface type I GRAM write table

- Parallel 18-Bit Bus Interface typel (IM3,IM2,IM1,IM0="1000")

Register	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Register
Command	х	x	х	x	х	x	x	х	х	x	0	0	1	0	0	0	1	0	22H
17H	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Color
06h	R5	R4	R3	R2	R1	RO	G5	G4	G3	G2	G1	GO	B5	B 4	B3	B2	B1	BO	262K-Color

Table 5.6 18-bit parallel interface type I GRAM write table

- Parallel 8-Bit Bus Interface typeII (IM3,IM2,IM1,IM0="0011")

Register	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Command
Command	0	0	1	0	0	0	1	0	X	Х	х	x	Х	Х	Х	Х	Х	Х	22H
17H	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Color
	R3	R2	R1	RO	G3	G2	G1	G0	X	×	x	x	х	х	х	х	×	х	dif Onlar
03h	B3	B2	B1	BO	R3	R2	R1	RO	Х	х	х	Х	х	X	Х	X	Х	х	4K-Color (2-pixels/ 3-bytes)
	G3	G2	G1	GO	B3	B2	B1	BO	X	х	x	x	Х	X	X	Х	X	Х	(2-pixels/ 0-bytes
05h	R4	R3	R2	R1	RO	G5	G4	G3	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	65K-Color
0511	G2	G1	G0	B4	B3	B2	B1	BO	х	X	x	x	х	X	Х	х	х	х	(1-pixel/ 2-bytes)
	R5	R4	R3	R2	R1	RO	х	X	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	0001/ 0-1
06h	G5	G4	G3	G2	G1	G0	х	x	X	х	x	x	х	X	X	X	X	X	262K-Color (1-pixel/ 3bytes)
	B5	B4	B3	B2	B1	BO	х	x	X	х	X	X	Х	X	х	х	X	Х	(1-pixel/ Suyles)

Table 5.7 8-bit parallel interface type II GRAM write table

- Parallel 16-Bit Bus Interface typeII (IM3,IM2,IM1,IM0="0010")

Register	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Command
Command									Х	0	0	1	0	0	0	1	0	×	22H
17H	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBO	Color
03h	X	х	X	x	R3	R2	R1	RO	x	G3	G2	G1	GO	B3	B2	B1	BO	х	4K-Color
05h	R4	R3	R2	R1	RO	G5	G4	G3	х	G2	G1	G0	B4	B3	B2	B1	BO	х	65K-Color
	R5	R4	R3	R2	R1	RO	х	X	х	G5	G4	G3	G2	G1	G0	х	х	х	0001/ 0-1
06h	B5	B4	B3	B2	B1	BO	х	x	х	R5	R4	R3	R2	R1	RO	х	x	х	262K-Color (2-pixels/ 3bytes)
	G5	G4	G3	G2	G1	GO	х	x	х	B5	B4	B3	B2	B1	BO	x	x	х	(2-pixels/ obytes)
07h	R5	R4	R3	R2	R1	RO	G5	G4	х	G3	G2	G1	G0	B5	B4	B3	B2	х	262K-Color (16+2
0/11	B1	BO	x	x	x	x	x	x	x	х	x	x	x			x	X	x	2021-00101 (10+2

Table 5.8 16-bit parallel interface type II GRAM write set table

- Parallel 9-Bit Bus Interface typell (IM3,IM2,IM1,IM0="1011")

i araner e	0				.) P					0		1.11	0						
Register	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Register
Command	0	0	1	0	0	0	1	0	х	х	х	x	x	х	X	x	х	х	22H
17H	D8	D7	D6	D5	D4	D3	D2	D1	DO	D8	D7	D6	D5	D4	D3	D2	D1	DO	Color
06h	R5	R4	R3	R2	R1	RO	G5	G4	G3	х	X	X	X	х	X	X	X	X	262K-Color
0011	G2	G1	G0	B5	B4	B3	B2	B1	BO	х	x	x	x	x	x	x	x	x	(1-pixel/ 2bytes)
				-	_	_			_	_	_	_		_	-		_	_	

Table 5.9 9-bit parallel interface set type II GRAM write table

- Parallel 18-Bit Bus Interface typeII (IM3,IM2,IM1,IM0="1010")

Register	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Register
Command	Х	x	х	х	х	х	х	x	х	0	0	1	0	0	0	1	0	х	22H
17H	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Color
06h	R5	R4	R 3	R2	R1	RO	G5	G4	G3	G2	G1	GO	B 5	B4	B3	B2	B1	BO	262K-Color

Table 5.10 18-bit parallel interface type II GRAM write set table

7-3 80-system 18-bit interface

The I80-system 18-bit parallel bus interface **type I** in command-parameter interface mode can be used by setting external pins "IM3, IM2, IM1, IM0" pins to "1000". And the I80-system 18-bit parallel bus interface **type II** in

command-parameter interface mode can be used by setting ""IM3, IM2, IM1, and IM0"pins to "1010". Figure 5.3 is the example of interface with I80 microcomputer system interface.

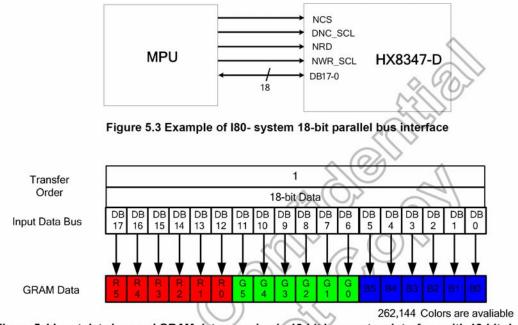


Figure 5.4 Input data bus and GRAM data mapping in 18-bit bus system interface with 18-bit-data Input ("IM3, IM2, IM1, IM"="1010" or "1000")

7-4 80-system 16-bit interface

The I80-system 16-bit parallel bus interface **type I** in command-parameter interface mode can be used by setting external pins ""IM3, IM2, IM1, IM0" pins to "0000". And I80-system 16-bit parallel bus interface **type II** in command-parameter interface mode can be used by setting ""IM3, IM2, IM1, IM0" pins to "0010". Figure 5.5 is the example of type I interface with I80 microcomputer system interface. And Figure 5.6 is the example of type II interface with I80 microcomputer system interface.

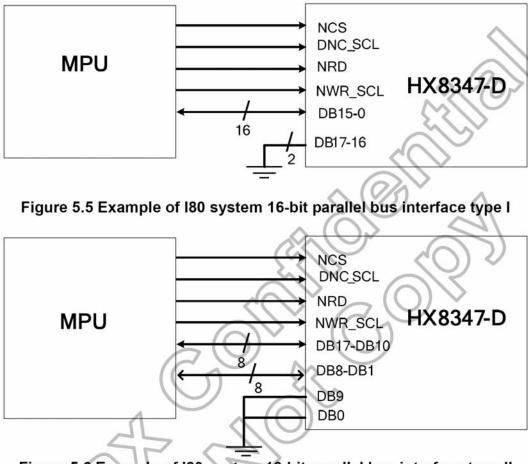
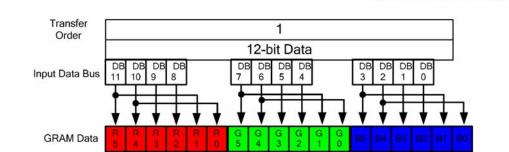
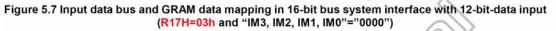
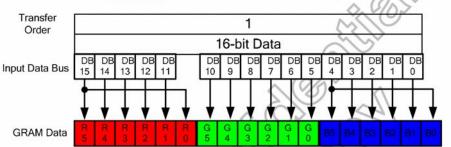
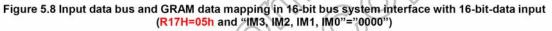
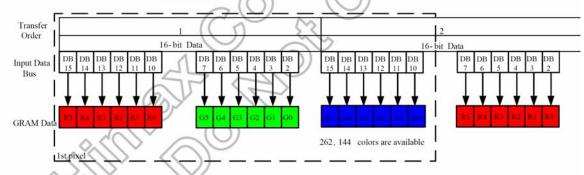
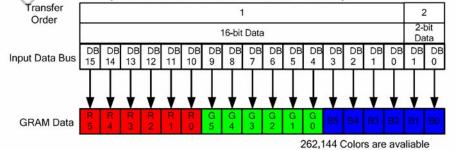
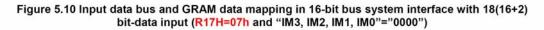
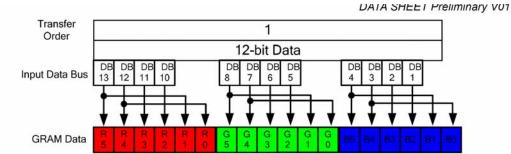





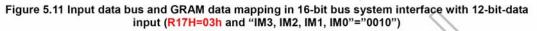
Figure 5.6 Example of I80 system 16-bit parallel bus interface type II

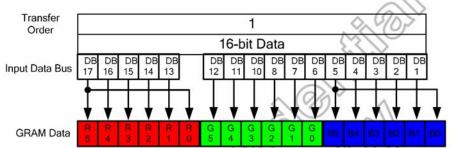


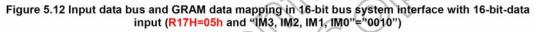
65,536 Colors are avaliable

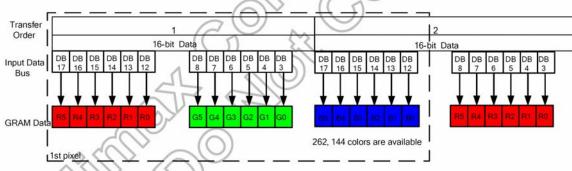
65,536 Colors are avaliable

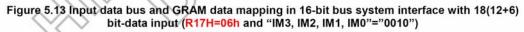





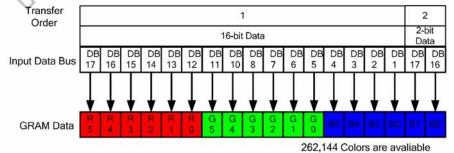

Figure 5.9 Input data bus and GRAM data mapping in 16-bit bus system interface with 18 bit-data input (R17H=06h and "IM3, IM2, IM1, IM0"="0000")

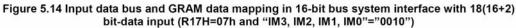


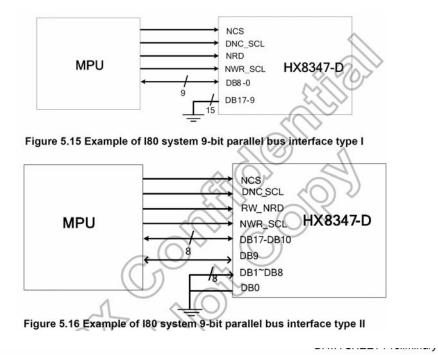



65,536 Colors are avaliable






65,536 Colors are avaliable



7-5 9-bit parallel bus system interface

The I80-system 9-bit parallel bus interface **type I** in command-parameter interface mode can be used by setting external pins ""IM3, IM2, IM1, IM0" pins to "1001". And I80-system 9-bit parallel bus interface **type II** in command-parameter interface mode can be used by setting ""IM3, IM2, IM1, IM0" pins to "1011". Figure 5.15 is the example of type I interface with I80 microcomputer system interface. And Figure 5.16 is the example of type II interface with I80 microcomputer system interface.

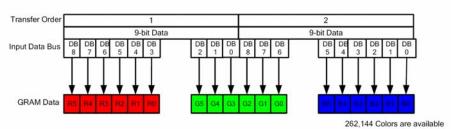
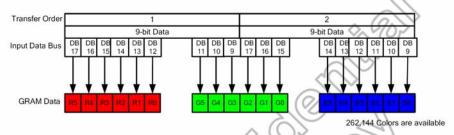
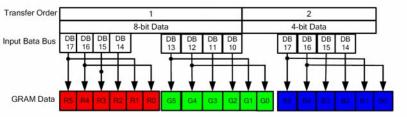


Figure 5.17 Input data bus and GRAM data mapping in 9-bit bus system interface with 18-bit-data input (R17H=06h and "IM3, IM2, IM1, IM0"="1001")




Figure 5.18 Input data bus and GRAM data mapping in 9-bit bus system interface with 18-bit-data input (R17H=06h and "IM3, IM2, IM1, IM0"="1011")

7-6 8-bit Parallel Bus System Interface

The I80-system 8-bit parallel bus interface **type I** in command-parameter interface mode can be used by setting external pins ""IM3, IM2, IM1, IM0" pins to "0001". And I80-system 8-bit parallel bus interface **type II** in command-parameter interface mode can be used by setting ""IM3, IM2, IM1, IM0" pins to "0011". Figure 5.19 is the example of type I interface with I80 microcomputer system interface. And Figure 5.20 is the example of type II interface with I80 microcomputer system interface.

DATA SHEET Preliminary V01

4,096 Colors are available

Figure 5.24 Input data bus and GRAM data mapping in 8-bit bus system interface with 12-bit-data input (R17H=03h and"IM3, IM2, IM1, IM0"="0011")

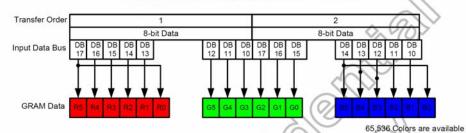


Figure 5.25 Input data bus and GRAM data mapping in 8-bit bus system interface with 16-bit-data input (R17H=05h and "IM3, IM2, IM1, IM0"="0011")

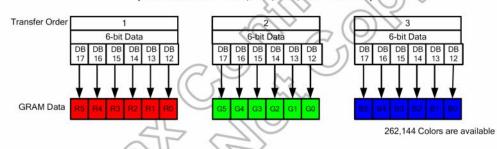


Figure 5.26 Input data bus and GRAM data mapping in 8-bit bus system interface with 18-bit-data input (R17H=06h and "IM3, IM2, IM1, IM0"="0011")

7-7 MCU Data Color Coding for RAM data Read

i aranor e					-21-							,							
Register	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Command
Command	X	х	X	×	Х	Х	Х	Х	Х	X	0	0	1	0	0	0	1	0	22H
	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Color
Deed	х	х	х	X	X	х	х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Dummy Read
Read Data Format	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	R5	R4	R3	R2	R1	RO	х	х	
Bataronnat	×	х	×	×	×	×	X	×	Х	X	G5	G4	G3	G2	G1	GO	х	х	262K-Color (1-pixel/ 3bytes)
	х	Х	х	Х	х	х	Х	Х	Х	Х	B5	B4	B3	B2	B1	BO	х	х	(1-pixel/ obytes)

- Parallel 8-Bit Bus Interface type I (IM3,IM2,IM1,IM0="0001")

Table 5.11 8-bit parallel interface type I GRAM read table

- Parallel 16-Bit Bus Interface type I (IM3,IM2,IM1,IM0="0000")

Register	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Command
Command	Х	Х	X	Х	Х	X	X	Х	Х	X	0	0	1	0	0	0	1	0	22H
	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Color
Deed	х	x	х	x	x	x	x	x	X	X	Х	Х	×	Х	Х	Х	Х	Х	Dummy Read
Read Data Format	Х	X	R5	R4	R3	R2	R1	RO	х	X	G5	G4	G3	G2	G1	G0	х	х	262K-Color
Data i officiat	Х	×	B5	B4	B3	B2	B1	B0	х	x	R5	R4	R3	R2	R1	RO	х	x	(2-pixels/ 3bytes)
	X	Х	G5	G4	G3	G2	G1	G0	х	x	B5	B4	B3	B2	B1	BO	х	x	(2-pixel3/ obytes)

Table 5.12 16-bit parallel interface type I GRAM read table

- Parallel 9-Bit Bus Interface type I (IM3,IM2,IM1,IM0="1001"))

Register	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Register
Command	Х	Х	Х	X	X	Х	Х	Х	Х	Х	0	0	1	0	0	0	1	0	22H
	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Color
Read	х	x	х	x	x	х	х	x	Х	×	×	X	х	X	X	Х	×	X	Dummy Read
Data Format	Х	Х	Х	Х	Х	Х	Х	Х	х	R5	R4	R3	R2	R1	RO	G5	G4	G3	262K-Color
	х	х	х	X	X	X	х	Х	x	G2	G1	G0	B5	B4	B3	B2	B1	B0	(1-pixel/ 2bytes)

Table 5.13 9-bit parallel interface type I GRAM read table

- Parallel 18-Bit Bus Interface type I (IM3,IM2,IM1,IM0="1000")

Register	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Register
Command	х	х	х	х	х	х	х	х	х	х	0	0	1	0	0	0	1	0	22H
Dead	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Color
Read Data Format	х	х	х	х	х	х	х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Dummy Read
Data i Officiat	R5	R4	R3	R2	R1	RO	G5	G4	G3	G2	G1	G0	B5	B4	B3	B2	B1	BO	262K-Color

Table 5.14 18-bit parallel interface type I GRAM read table

- Parallel 8-Bit Bus Interface type II (IM3,IM2,IM1,IM0="0011")

Register	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Command
Command	0	0	1	0	0	0	1	0	Х	Х	х	х	Х	Х	X	Х	Х	Х	22H
	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Color
Read Data Format	х	X	х	х	x	x	x	X	Х	х	Х	Х	X	Х	х	Х	Х	Х	Dummy Read
	R5	R4	R3	R2	R1	RO	х	x		1									00014 0 1
	G5	G4	G3	G2	G1	G0	x	x	х	х	x	x	X	х	х	х	Х	X	262K-Color (1-pixel/ 3bytes)
	B5	B4	B3	B2	B1	BO	х	X	х	X	Х	Х	X	х	Х	Х	X	Х	(1-pixel/ Suyles)

Table 5.15 8-bit parallel interface type II GRAM read table

- Parallel 16-Bit Bus Interface type II (IM3,IM2,IM1,IM0="0010")

Register	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Command
Command	х	x	х	х	x	х	x	x	х	0	0	1	0	0	0	1	0	Х	22H
	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Color
Dead		х	х	х	х	х	x	х	Х		х	х	х	х	х	х	х	Х	Dummy Read
Read Data Format	R5	R4	R3	R2	R1	RO	х	x	Х	G5	G4	G3	G2	G1	G0	х	х	Х	
Data Format	B5	B4	B 3	B2	B1	BO	х	x	×	R5	R4	R3	R2	R1	RO	х	х	х	262K-Color (2-pixels/ 3bytes)
	G5	G4	G3	G2	G1	G0	х	x	×	B5	B4	B 3	B2	B1	BO	х	x	х	(2-pixels/ obytes)

Table 5.16 16-bit parallel interface type II GRAM read table

- Parallel 9-Bit Bus Interface type II (IM3,IM2,IM1,IM0="1011")

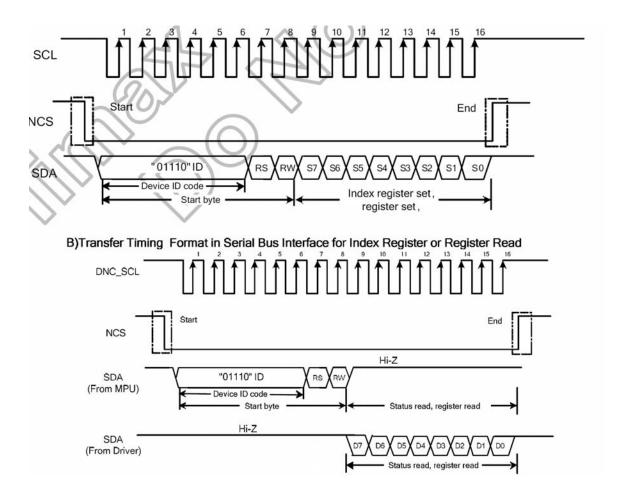
Register	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Register
Command	0	0	1	0	0	0	1	0	Х	X	X	X	X	X	X	X	X	Х	22H
	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Color
Read	х	x	х	x	x	x	x	x	X	×	X	Х	Х	Х	Х	Х	Х	Х	Dummy Read
Data Format	R5	R4	R3	R2	R1	RO	G5	G4	G3	х	Х	X	X	X	Х	Х	Х	Х	262K-Color
	G2	G1	GO	B5	B4	B3	B2	B1	BO	х	х	X	х	х	X	Х	X	х	(1-pixel/ 2bytes)

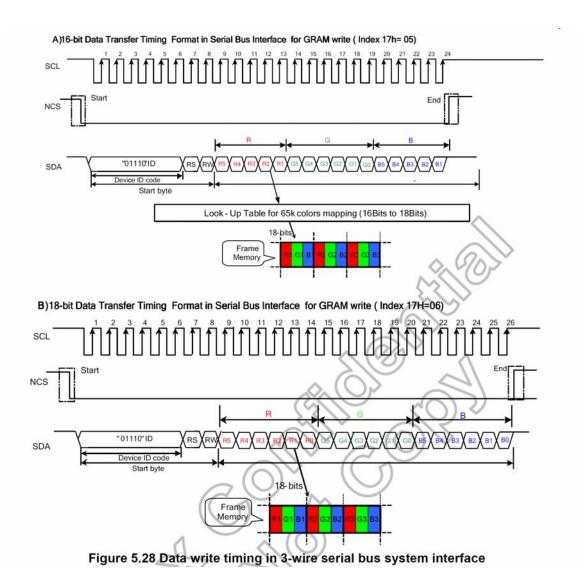
Table 5.17 9-bit parallel interface type II GRAM read table

- Parallel 18-Bit Bus Interface type II (IM3,IM2,IM1,IM0="1010")

Register	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Register
Command	х	х	х	х	x	х	X	X	х	0	0	1	0	0	0	1	0	Х	22H
Dead	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Color
Read Data Format	х	х	х	х	х	х	х	х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Dummy Read
Data i officiat	R5	R4	R3	R2	R1	RO	G5	G4	G3	G2	G1	GO	B5	B4	B3	B2	B1	BO	262K-Color

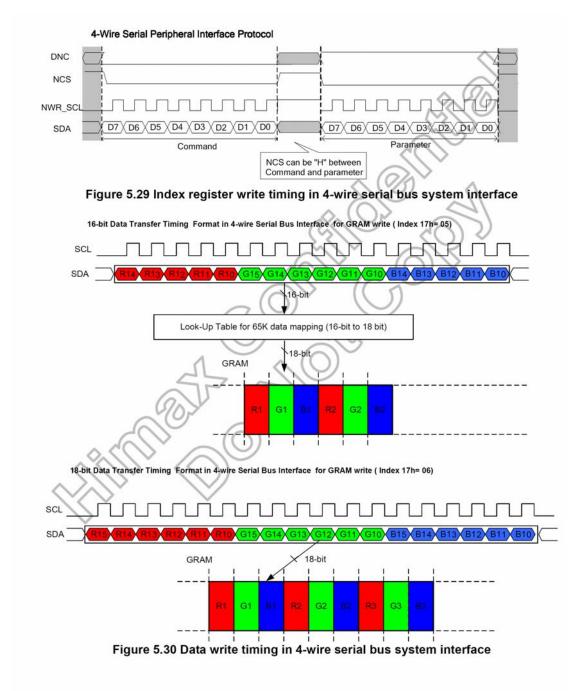
Table 5.18 18-bit parallel interface type II GRAM read table


7-8 Serial bus system interface


The HX8347-D supports two kinds of serial bus interface in register-content mode by setting external pins "IM2, IM1" pins to "10" 3-wire serial interface and "IM2, IM1" pins to "11" 4-wire serial interface. The serial bus system interface mode is enabled through the chip select line (/CS), and it is accessed via a control consisting of the serial input data (SDA), and the serial transfer clock signal (WR/SCL).

7-8-1 3-wire serial interface

As the chip select signal (NCS) goes low, the start byte needs to be transferred first. The start byte is made up of 6-bit bus device identification code; register select (RS) bit and read/write operation (RW) bit. The five upper bits of 6-bit bus device identification code must be set to "01110", and the least significant bit of the identification code must be set as the external pin IM0 input as "ID". The seventh bit (RS) of the start byte determines internal index register or register, GRAM accessing. RS must be set to "0" when writing data to the index register or reading the status and it must be set to "1" when writing or reading a command or GRAM data. The read or write operation is selected by the eighth bit (RW) of the start byte. The data is written to the chip when R/W = 0, and read from chip when RW = 1.


RS	R/W	Function
0	0	Set index register
1	0	Writes Instruction or GRAM data
1	1	Reads command (Not support GRAM read)

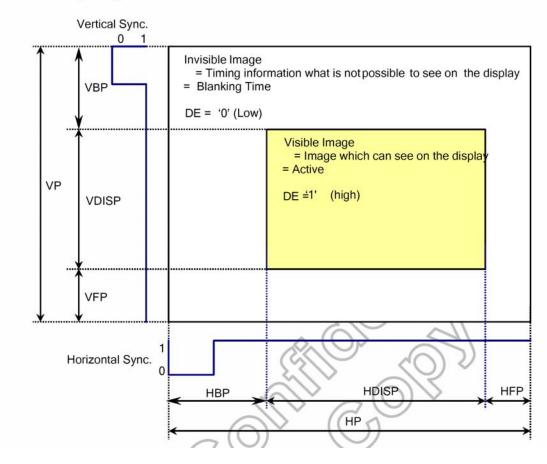
7-8-2 4-wire serial interface

4-pin serial case, data packet contains just transmission byte and control bit DNC is transferred by DNC pin. If DNC is low, the transmission byte is command byte. If DNC is high, the transmission byte is stored to index register or GRAM. The MSB is transmitted first. The serial interface is initialized when NCS is high. In this state, NWR_SCL clock pulse or SDA data have no effect. A falling edge on NCS enables the serial interface and indicates the start of data transmission.

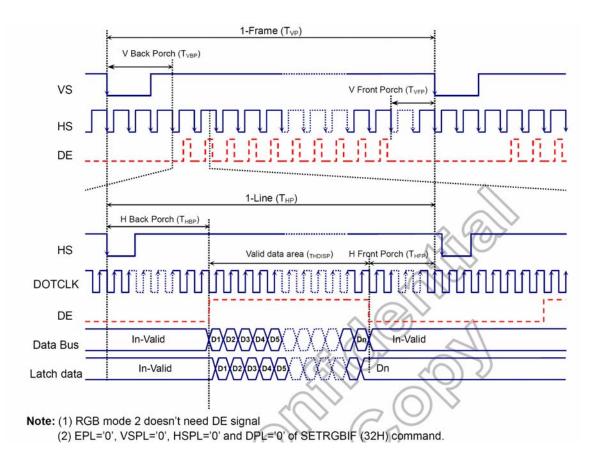
7-9 RGB Interface

The HX8347-D uses RCM [1:0] ='10' or '11' hardware setting to select RGB interface. After Power on Sequence, the RGB interface is activated. When RCM [1:0] ='10' use VSYNC, HSYNC, DE, DOTCLK, DB17-0 parallel lines for the RGB interface (RGB mode 1). When RCM [1:0] ='11' use VSYNC, HSYNC, DOTCLK, DB17-0 parallel lines for the RGB interface (RGB mode 2).

Pixel clock (DOTCLK) must be running all the time without stopping and it is used to entering VSYNC, HSYNC, DE and DB17-0 lines states when there is a rising edge of the DOTCLK.


In RGB interface mode 1, the valid display data is inputted in pixel unit via DB17-0 according to the high-level('H') of DE signal, and display operations are executed in synchronization with the frame synchronizing signal (VSYNC), line synchronizing signal (HSYNC) and pixel clock (DOTCLK). In RGB interface mode 2, the valid display data is inputted in pixel unit via DB17-0 according to the HBP setting of HSYNC signal, and the VBP setting of VSYNC. In these two RGB interface modes, the input display data is not written to GRAM and is displayed directly.

Vertical synchronization (VSYNC) signal is used to tell when there a new frame of the display is received, and this is negative ('-', '0', low) active. Horizontal synchronization signal (HSYNC) is used to tell when a new line of the frame is received, and this is negative ('-', '0', low) active. Data enable (DE) is used to tell when RGB information is received that should be transferred on the display, and this is positive ('+', '1', high) active. DB17-0 are used to tell what the information of the image is, that is transferred on the display when DE='H'.


DOTCL VSYNC HSYNC DE DB17-0

The pixel clock cycle is described in the following figure.

General timing diagram in RGB interface is as follow.

The image information is correct on the display when the timings are in range on the interface. However, the image information will be incorrect on the display, when timings are out of the range on the RGB interface and the correct image information will be displayed automatically (by the display module) on the next frame (vertical sync.), when there is returned from out of the range to in range RGB interface timings.

All 3 kinds of bus width can be available during RGB interface mode (selected by COLMOD (17H) command for 6-bit, 16-bit and 18-bit data width)

17H	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Bus width
50h	R4	R3	R2	R1	RO	х	G5	G4	G3	G2	G1	G0	B4	B3	B2	B1	BO	х	16-bit data
60h	R5	R4	R3	R2	R1	RO	G5	G4	G3	G2	G1	G0	B5	B4	B 3	B2	B1	BO	18-bit data
17H	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Bus width
	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	R5	R4	R3	R2	R1	RO	х	х	
E0h	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	G5	G4	G3	G2	G1	G0	х	х	6-bit data
	×	х	×	х	×	х	Х	X	Х	×	B5	B4	B3	B2	B1	BO	х	х	

Note: (1) When 17H="E0h", 6-bit data width of 3-time transfer is used to transmit 1 pixel data with the 18-bit color depth information.

(2) Only 17H= "50h", "60h", "E0h" are valid on RGB I/F, others are invalid.

RGB interface mode

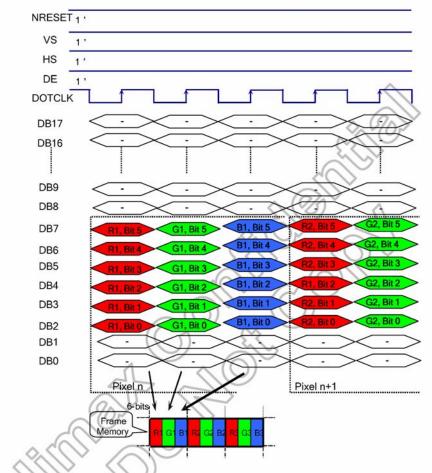
RGB I/F Mode	DOTCLK	DE	VS	HS	Video Data bus DB [B:0]	Register for Blanking Porch setting
RGB Mode 1	Used	Used	Used	Used	Used	Not Used
RGB Mode 2	Used	Not Used	Used	Used	Used	Used

There are 2 kinds of RGB mode which is selected by RCM1 & RCM0 hardware pins.

In RGB Mode 1 (RCM1, RCM0 = "10"), writing data to display is done by DOTCLK and Video Data Bus (DB [17:0]), when DE is high state. The external synchronization signals (DOTCLK, VS and HS) are used for internal display signals. So, controller (host) must always transfer DOTCLK, VS, HS and DE signals to driver.

In RGB Mode 2 (RCM1, RCM0 = "11"), blanking porch setting of VS and HS signals are defined by R33h and R34h command. DE pin is not used.

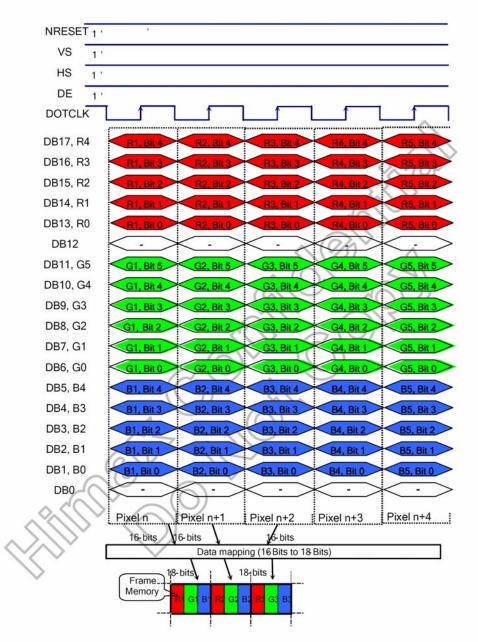
7-10 Color order on RGB interface

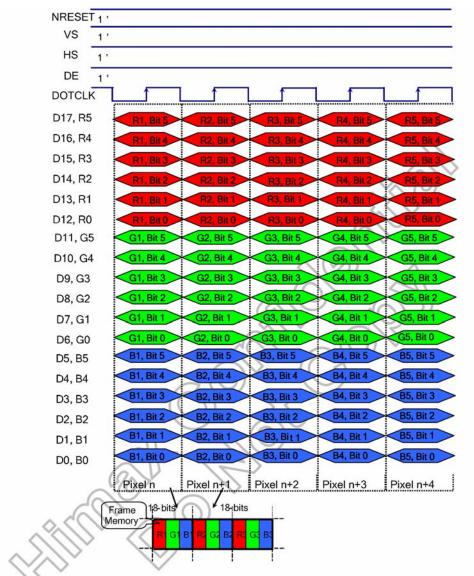

The meaning of the pixel information, when 3 components/pixel (Red, Green and Blue) on RGB interface are used, is describing on the following table:

Pixel Color	R Component	G Component	B Component
Black	All bits are 0	All bits are 0	All bits are 0
Blue	All bits are 0	All bits are 0	All bits are 1
Green	All bits are 0	All bits are 1	All bits are 0
Cyan	All bits are 0	All bits are 1	All bits are 1
Red	All bits are 1	All bits are 0	All bits are 0
Magenta	All bits are 1	All bits are 0	All bits are 1
Yellow	All bits are 1	All bits are 1	All bits are 0
White	All bits are 1	All bits are 1	All bits are 1

Note: There are only defined main colors on this table - Not all gray levels of colors.

7-11 RGB data color coding


18-bits/pixel Colors Order on 6-bit Data width RGB Interface (RGB 6-6-6-bit input). There is 1 pixel (3 sub-pixels) per 3 bytes, 262K-colors, 17H="E0h"


Note: (1) The data order is as follows, MSB=D7, LSB=D0 and picture data is MSB=Bit7, LSB=Bit0 for Red, Green and Blue data. (3-trandfer data one pixel)

(2) '-' Don't care, but need to set IOVCC or VSSD level.

16-bits/pixel Colors Order on the 16-bits Data width RGB Interface (RGB 5-6-5-bits input). There is 1 pixel (3 sub-pixels) per byte, 65K-colors, 17H="50h"

- Note: (1) The data order is as follows, MSB=D17, LSB=D0 and picture data is MSB=Bit5, LSB=Bit0 for Green data and MSB=Bit4, LSB=Bit0 for Red and Blue data.
 - (2) '-' Don't care, but need to set IOVCC or VSSD level.

18-bits/pixel Colors Order on the 18-bit Data width RGB Interface (RGB 6-6-bit input). There is 1 pixel (3 sub-pixels) per byte, 262K-colors, 17H="60h"

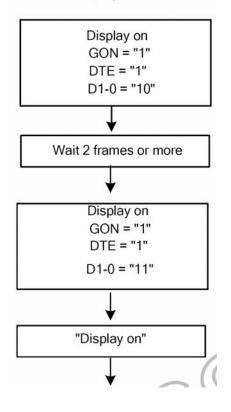
Note: (1) The data order is as follows, MSB=D17, LSB=D0 and picture data is MSB=Bit5, LSB=Bit0 for Red, Green and Blue data.

(2) '-' Don't care, but need to set IOVCC or VSSD level.

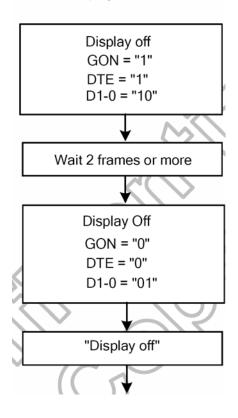
7-12 Instruction List

LCD Driver/Controller IC:HX8347-D

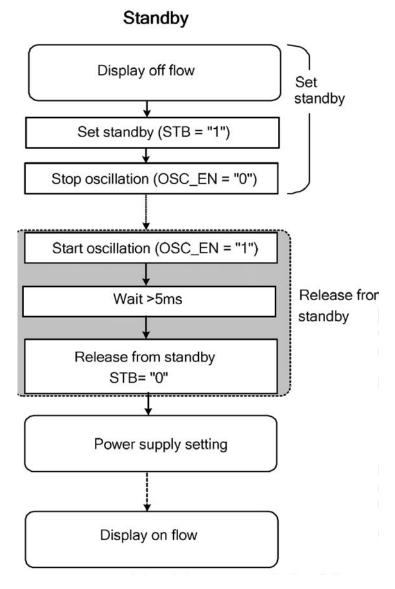
(Hex)	Operation	W/R	Upper Code				Low	er Code				Comment
(IICA)	Code		D[17:8]	D7	D6	D5	D4	D3	D2	D1	D0	
00	Himax ID	R	-	0	1	0	0	0	1	1	1	-
01	Display Mode control	W/R	-	DP_S TB(0)	DP_STB _S(0)	•	-	SCROL (0)	IDMON (0)	INVON (0)	PTLON (0)	-
02	Column address start 2	W/R	-			1	SC[15:8] (8	3'b0000_00	000)			-
03	Column address start 1	W/R	•	9)	SC[7:0] (8	'b0000_00	00)			-
04	Column address end 2	W/R			EC[15:8] (8'b0000_0000)							
05	Column address end 1	W/R	-		EC[7:0] (8'b1110_1111)							
06	Row address start 2	W/R	-			1	SP[15:8] (8	3'b0000_00	000)			-
07	Row address start 1	W/R	-			;	SP[7:0] (8'	b0000_000	000)			
08	Row address end 2	W/R	-				EP[15:8] (8	3'b0000_00	001)			-
09	Row address end 1	W/R	-				EP[7:0] (8	'b0011_11	11)			-
0A	Partial area start row 2	W/R	-			F	PSL[15:8] (8'b0000_0	000)			-
0B	Partial area start row 1	W/R	-			F	PSL[7:0] (8	'b0000_00	000)			-
0C	Partial area end row 2	W/R	-			F	PEL[15:8] (8'b0000_0	001)			-
0D	Partial area end	W/R	-				PEL[7:0] (B'b0011_1	111)			
0E	row 1 Vertical Scroll	W/R	-		TFA[15:8] (8'b0000_0000)							
0F	Top fixed area 2 Vertical Scroll	W/R					TFA[7:0] (8					2
10	Top fixed area 1 Vertical Scroll	W/R	-		VSA[15:8] (8'b0000_0001)						-	
11	height area 2 Vertical Scroll	W/R	-	-	VSA[7:0] (8'b0100_0000)							-
12	height area 1 Vertical Scroll	W/R	-				BFA[15:8] (2.00				-
13	Button area 2 Vertical Scroll	W/R					3FA [7:0] (8					-
14	Button area 1 Vertical Scroll	W/R	- 67				SP [15:8]	n Bala				
15	Start address 2 Vertical Scroll	W/R	\mathcal{P}_{0}				/SP [7:0] (i					
16	Start address 1 Memory Access	W/R	×.	MY(0)	MX(0)	MV(0)	ML(0)	BGR(0)	-			
	control	\sim		Mir (0)				Bont(0)	15		110	
17 18	COLMOD OSC Control 2	W/R W/R	-	1/		0] (4b'0110)				PF[2:0] (3b'		-
10	OSC Control 1	W/R	-	-	PI_RADJI	[3:0] (3b'00	-	-	-	0[3:0](4b'010	OSC_E	· ·
1A	Power Control 1	W/R				-	1.12			BT[2:0] (00*	N(0)	-
1B	Power Control 2	W/R				-	· · · · ·	VRH[5:0] (01_1011)_4		.)	
10	Power Control 3	W/R	-			1		-		AP[2:0] (01	1)	2
1D	Power Control 4	W/R	-			I_FS0[2:0](100)	-	2	P_FS0[2:0]]		-
1E	Power Control 5	W/R	-	-		FS1[2:0]				P_FS1[2:0]]		-
1F	Power Control 6	W/R		GASEN(1)	VCOMG(0	1	PON(0)	DK(1)	XDK(0)	DDVDH_ TRI(0)	STB(1)	-
22	SRAM Write Control	W/R					SRAM W	/rite				-
23	VCOM Control 1	W/R	-	1			VMF[7:0]	(1000_000	00)			-
24	VCOM Control 2	W/R	-					(0111_000				-
25	VCOM Control 3	W/R	-	1		21.5		(0010_111				-
26	Display Control 1	W/R			-	-	-			6:0](0001)		-
27	Display Control 2	W/R	-	PT[1	:0](10)	PTV	1:0](10)	-	-	PTG(1)	REF(1)	-
28	Display Control 3	W/R	-	-	-	GON(1)		DI1	:0] (00)	-	-	-

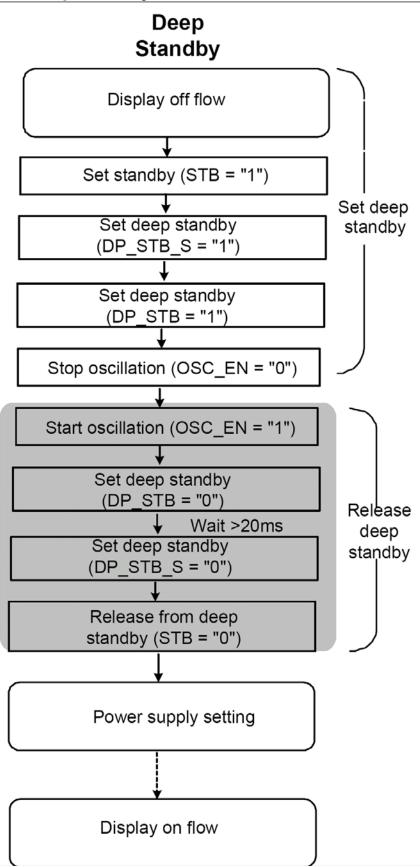

(Hex)	Operation	W/R	Upper Code				Low	ver Code				Comment
(,	Code		D[17:8]	D7	D6	D5	D4	D3	D2	D1	D0	
29	Frame Rate control 1	W/R	-		I/PI_RTN	[3:0](0010)			N/P_RT	N[3:0](0010)		4
2A	Frame Rate Control 2	W/R	-		-	I/PI_DIV	[1:0](00)	8	-	N/P_DIV	[1:0](00)	
2B	Frame Rate Control 3	W/R	-			N/I	P_DUM[7:0	0] (8b'0001	1_1100)			-
2C	Frame Rate Control 4	W/R					PI_DUM[7:0					
2D	Cycle Control 1	W/R		1			DON[7:0]					-
2E 2F	Cycle Control 2	W/R W/R	-		1/01		SDOF[7:0]	(8'00111_		NIM/[2:01/2b	2001)	-
	Display inversion RGB interface	10.0220.0220	-	-	1/PI_	NW[2:0](3b	1	· ·	IN/P	NW[2:0] (3b		-
31	control 1 RGB interface	W/R	-	-	-	-	-	- DPL	- HSPL	RCM[1	:0](00) EPL	-
32	control 2 RGB interface	W/R	-	-	-		-	(0)	(0)	(0)	(0)	
33	control 3	W/R	-				HE	3P[7:0]				
34	RGB interface control 4	W/R	•	HBF	P[9:8]				BP[5:0]			÷
36	Panel Characteristic	W/R			~	-	-	SS_P anel	GS_Pan el	REV_Pa nel	BGR_P anel	
38	OTP Control 1	W/R		OTP_F	PTM[1:0]	OTP_VA	RDJ[1:0]	OTP_ POR	OTP_O TPEN	OTP_PP ROG	OTP_P WE	÷
39	OTP Control 2	W/R	-	-	-	-	-	-	OTP_Y A2	OTP_YA1	OTP_Y A0	-
ЗA	OTP Control 3	W/R	-	-	-	-	OTP_X A4	OTP_ XA3	OTP_X A2	OTP_XA1	OTP_XA0	
3C	CABC Control 1	W/R	-				DBV[7:0](8'h00)				-
3D	CABC Control 2	W/R	-		-	BCTRL (0)	(1)	DD (0)	BL (0)	5 -		
3E	CABC Control 3	W/R	-	÷	-	12	\geq	R	9	C1 (0)	C0 (0)	•
3F	CABC Control 4	W/R	-				CMB[7:0](8'h00)				-
40	r1 Control (1)	W/R	-	-	VRP0[5:0] (6'b00_0001)						-	
41	r1 Control (2)	W/R		-	CO	VRP1[5:0] (6'b00_1110)						
42	r1 Control (3)	W/R	-	-	$\left(\cdot \right)$] (6'b01_00			
43	r1 Control (4) r1 Control (5)	W/R W/R	-	-	2] (6'b01_10] (6'b01_10			-
45	r1 Control (6)	W/R	-	1] (6'b10 01			
46	r1 Control (7)	W/R	-	25	_		PRP	0[6:0] (7'b0		00)		
47	r1 Control (8)	W/R	-					1[6:0] (7'b1				-
48	r1 Control (9)	W/R	- 697	NY I	-	11			P0[4:0] (5'b	0 1011)		2
49	r1 Control (10)	W/R	~.(η.	-	~~			P1[4:0] (5'b			-
4A	r1 Control (11)	W/R	1.	-	$\langle \cap \rangle$		°		P2[4:0] (5'b		Î	
4B	r1 Control (12)	W/R	1.	\sim	(\odot)	-		PKF	P3[4:0] (5'b	1_1010)		
4C	r1 Control (13)	W/R	V.	10		-	4		P4[4:0] (5'b			1
50	r1 Control (14)	W/R	⁻	(-)) -] (6'b01_10			
51	r1 Control (15)	W/R	-	<u> </u>	-] (6'b10_01			
52	r1 Control (16)	W/R	-	~	-				(6'b10_01			-
53	r1 Control (17)	W/R	-		-] (6'b10_11			-
54 55	r1 Control (18) r1 Control (19)	W/R W/R	-	-	-] (6'b11_00] (6'b11_11			-
56	r1 Control (19)	W/R	-	-	-		PRNO		01_1010)	(0)		-
57	r1 Control (21)	W/R	-	-				1[6:0] (7'b1				
58	r1 Control (22)	W/R	-	-	-				0] (5'b0_011	1)		-
59	r1 Control (23)	W/R	-	-	-)] (5'b0_010			-
5A	r1 Control (24)	W/R	-	-	-)] (5'b0_011			-
5B	r1 Control (25)	W/R	-	-	-) (5'b0_101			-
5C	r1 Control (26)	W/R	-	-	-) (5'b1_010			
5D	r1 Control (27)	W/R	-		[1:0] (11)	CGMN0	[1:0](00) TE_mod	Concerns the second	1[1:0](11)		[1:0](00)	-
60 E4	TE Control Power saving 1	W/R	-	•	-		e(0)	TEOE(0) _S1[7:0]		-	-	
E5	Power saving 1 Power saving 2	W/R						S2[7:0]				
E6	Power saving 2 Power saving 3	W/R	-					S3[7:0]				
E7	Power saving 4	W/R	-									-
E8	Source OP control_Normal	W/R	12				OPC	N_N[7:0]				5

(Hex)	Operation	W/R	Upper Code									Comment
	Code		D[17:8]	D7	D6	D5	D4	D3	D2	D1	D0]
E9	Source OP control_IDLE	W/R	-		OPON_I[7:0]							
EA	Power control internal use (1)	W/R			STBA[15:8]							
EB	Power control internal use (2)	W/R	-		STBA[7:0]							-
EC	Source control internal use (1)	W/R	-		PTBA[15:8]							
ED	Source control internal use (2)	W/R	-		PTBA[7:0]							-
FF	Page select	W/R	-	-	-	-	-	-	-	PAGE_SE	L[1:0] (00)	-

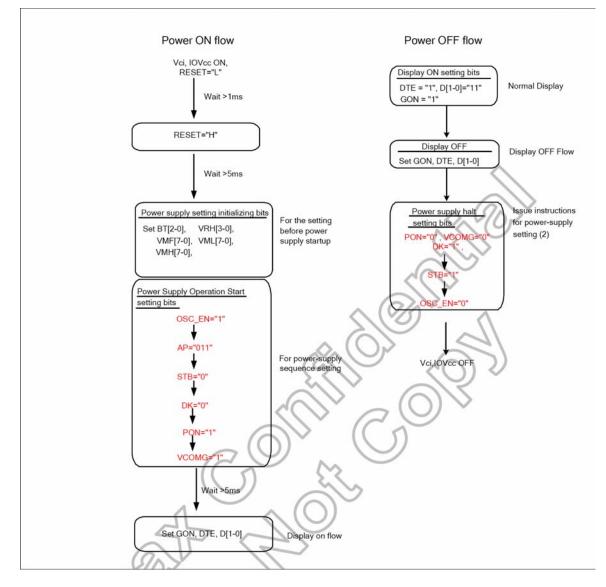

IM3~IM0 = "0000" 8080 MCU 16-bits Parallel type I
DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Register-content D7 D6 D5 D4 D3 D2 D1 D0
IM3~IM0 = "0001" 8080 MCU 8-bits Parallel type I
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Register-content D7 D6 D5 D4 D3 D2 D1 D0
IM3~IM0 = "0010" 8080 MCU 16-bits Parallel type II
DB17 DB16 DB15 DB14 DB12 DB11 DB10 DB8 DB7 DB6 DB5 DB4 DB2 DB1
Register-content D7 D6 D5 D4 D3 D2 D1 D0
IM3~IM0 = "0011" 8080 MCU 8-bits Parallel type II
DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10
D7 D6 D5 D4 D3 D2 D1 D0 Register-content
IM3~IM0 = "1000" 8080 MCU 18-bits Parallel type I
DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Register-content D7 D6 D5 D4 D3 D2 D1 D0
Register-content D7 D6 D5 D4 D3 D2 D1 D0
IM3~IM0 = "1001" 8080 MCU 9-bits Parallel type I
DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Register-content D7 D6 D5 D4 D3 D2 D1 D0
IM3~IM0 = "1010" 8080 MCU 18-bits Parallel type II
DB17 DB16 DB15 DB14 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB4 DB3 DB2 DB1 DB0
Register-content D7 D6 D5 D4 D3 D2 D1 D0
IM3~IM0 = "1011" 8080 MCU 9-bits Parallel type II
DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9
D7 D6 D5 D4 D3 D2 D1 D0 Register-content

8 Application8-1 Display ON / OFF

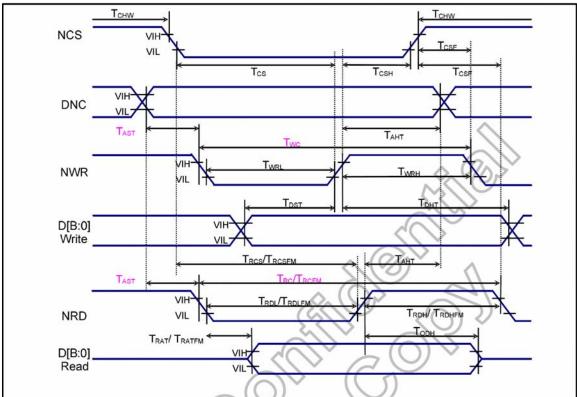

Display on flow



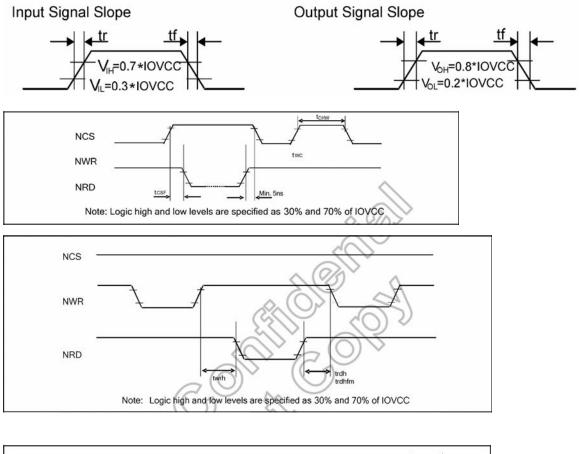
Display off flow

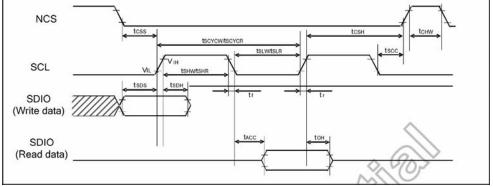


8-2 Standby mode



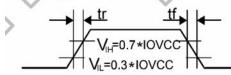
8-4 Power ON/OFF setting flow

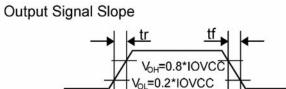

Electrical Characteristics 9

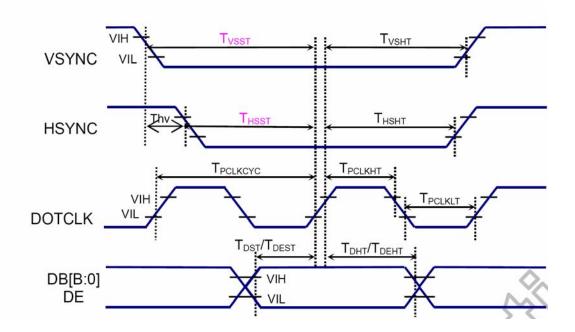

AC Characteristics 9-1

		(VSSA=0V, IOVCC=1.65V	to 3.3V,	VCI=2.3	/ to 3.3\	$(T_{A} = -30 \text{ to } 70^{\circ} \text{ C})$	
Signal	Symbol	Parameter	Min.	Max.	Unit	Description	
DNC_SCL	tAST	Address setup time	0	-	ns		
DINC_SCL	tAHT	Address hold time (Write/Read)	10	-	115	-	
	tCHW	Chip select "H" pulse width	0	-			
	tCS	Chip select setup time (Write) 15 -					
NCS	tRCS	Chip select setup time (Read ID)	45	-	ns		
NC3	tRCSFM	Chip select setup time (Read FM)	355	-	115	-	
\sim	tCSF	Chip select wait time (Write/Read)	10	-			
~ ~ /	tCSH	Chip select hold time	10	-			
\sim	tWC	Write cycle	66	-			
NWR_SCL	tWRH	Control pulse "H" duration	15	-	ns		
	tWRL	Control pulse "L" duration	15	-			
2	tRC	Read cycle (ID)	160	-		When read ID data	
NRD(ID)	tRDH	Control pulse "H" duration (ID)	90	-	ns		
	tRDL	Control pulse "L" duration (ID)	45	-		uala	
	tRCFM	Read cycle (FM)	450	-		When read from	
NRD(FM)	tRDHFM	Control pulse "H" duration (FM)	90	-	ns		
	tRDLFM	Control pulse "L" duration (FM)	355	-	102010	frame memory	
	tDST	Data setup time	10	-		For movimum	
	tDHT	Data hold time	10	-		For maximum	
DB17 to DB0	tRAT	Read access time (ID)	-	40	ns	CL=30pF For minimum	
	tRATFM	Read access time (FM)	120	340		· · · · · · · · · · · · · · · · · · ·	
	tODH	Output disable time	20	80		CL=8pF	

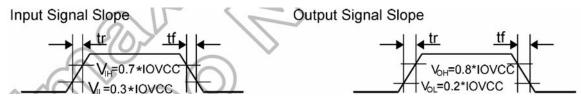
Note: The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. Logic high and low levels are specified as 30% and 70% of IOVCC for Input signals.

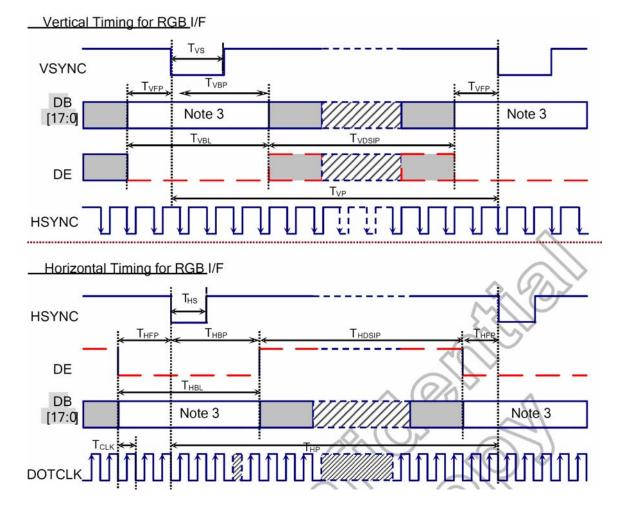





Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Serial clock cycle (Write)	tSCYCW		20	<u>(</u> -	-	
SCL "H" pulse width (Write)	tSHW	SCL	8 <	11		ns
SCL "L" pulse width (Write)	tSLW		8	1	-	
Data setup time (Write)	tSDS	SDIO	(10)) 2	-	ns
Data hold time (Write)	tSDH	3010	10	-	-	115
Serial clock cycle (Read)	tSCYCR		150		12	
SCL "H" pulse width (Read)	tSHR	SCL	60	-	-	ns
SCL "L" pulse width (Read)	tSLR		60			
	0	SDI for maximum				
Access Time	tACC	CL=30pF	10		50	ns
	()	For minimum CL=8pF				
		SDO For maximum				
Output disable time	tOH	CL=30pF	15		50	ns
	2	For minimum CL=8pF		-		
SCL to Chip select	tSCC <	SCL, NCS	20	-	-	ns
NCS "H" pulse width	tCHW	NCS	40	-		ns
Chip select setup time	tCSS	NCS	15	<u></u>	<u>12</u>	ns
Chip select hold time	tCSH	NOS	15	-	12	115

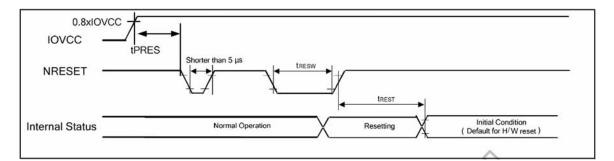
Intering the signal rise time and fail time (tr, tr) is specified at 15 ns or less. Logic high and low levels are specified as 30% and 70% of IOVCC for Input signals.





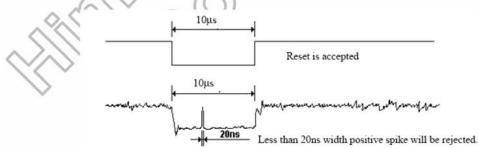
Item	Symbol	Condition			Unit	
item	Symbol	Condition	Min.	Тур.	Max.	
Pixel low pulse width	T _{CLKLT}	- <	15	- (-	ns
Pixel high pulse width	T _{CLKHT}	- /	15	\sim	- \	ns
Vertical Sync. set-up time	T _{VSST}	- 🔊 (UM5	1	\ -	ns
Vertical Sync. hold time	T _{VSSHT}	-(6())	15	$\langle \Omega \rangle$	U -	ns
Horizontal Sync. set-up time	T _{HSST}	V)5-	15	J.	-	ns
Horizontal Sync. hold time	T _{VSSHT}	VA.	15	10	-	ns
Data Enable set-up time	T _{DEST}	$\langle C \rangle$	15	7 -	-	ns
Data Enable hold time	T _{DEHT}	() (15		-	ns
Data set-up time	T _{DST}	(O) · · · ·	15	-	-	ns
Data hold time	TDHT	- M	15	-	-	ns
Phase difference of sync signal falling edge		1.	0	-	240	Dotclk

(VSSA=0V, IOVCC=1.65V to 3.3V, VCI=2.3V to 3.3V, Ta = -30 to 70° C)


Note: The input signal rise time and fall time (tr, tf) is specified at 15 ns or less.

ltem	Symbol	Condition		Unit			
item	Symbol	Condition	Min.	Тур.	Max.	Unit	
Vertical Timing		CN M		l determ			
Vertical cycle period	T _{VP}	\bigcirc - \checkmark	324	326	452	HS	
Vertical low pulse width	T _{VSil}	· 6	2	2	-	HS	
Vertical front porch	TVEP	<u> </u>	2	2	6	HS	
Vertical back porch	TVBP		2	4	126	HS	
Vertical blanking period	TVBL	TVBP + TVFP	4	6	132	HS	
	2107	\sim	-		-	HS	
Vertical active area	TVDISP	\bigcirc	-	320	-	HS	
		(\bigcirc)	-		-	HS	
Vertical refresh rate	TVRR	Frame rate	50	60	80	Hz	
Horizontal Timing	$\langle \rangle$)	· _ · ·				
Horizontal cycle period	THE	-	244	252	1008	DOTCLK	
Horizontal low pulse width	T _{HS}	-	2	2	256	DOTCLK	
Horizontal front porch	T _{HFP}	-	2	4	256	DOTCLK	
Horizontal back porch	T _{HBP}	-	2	8	256	DOTCLK	
Horizontal blanking period	T _{HBL}	T _{HBP} + T _{HFP}	4	12	256	DOTCLK	
Horizontal active area	T _{HDISP}	-	-	240	-	DOTCLK	
Pixel clock cycle TVRR=60Hz	f _{CLKCYC}	-	3.9	-	16.6	MHz	

Note: (1) IOVCC=1.65 to 3.3V, VCI=2.3 to 3.3V, VSSA=VSSD=0V, T_A=-30 to 70℃ (to +85℃ no damage) (2) Data lines can be set to "High" or "Low" during blanking time – Don't care.
(3) HP is multiples of DOTCLK.



Symbol	Parameter	Related		Spec.		Note	Unit
Symbol	Parameter	Pins	Min.	Min. Typ.		Note	Unit
tRESW	Reset low pulse width ⁽¹⁾	NRESET	10	-			μs
0.00	-	-	2	5	When reset applied during STB OUT mode	ms	
IREST	EST Reset complete time ⁽²⁾	-		-2	120	When reset applied during STB mode	ms
tPRES	Reset goes high level after Power on time	NRESET & IOVCC	1/2	9.6	<u>}</u> ?	Reset goes high level after Power on	ms

Note: (1) Spike due to an electrostatic discharge on NRESET line does not cause irregular system reset according to the table below.

NRESET Pulse	Action
Shorter than 5 µs	Reset Rejected
Longer than 10 µs	Reset
etween 5 µs and 10 µs	No Reset Start

- (2) During the resetting period, the display will be blanked (The display is entering blanking sequence which maximum time is 120 ms, when Reset Starts in STB Out –mode. The display remains the blank state in STB –mode) and then return to Default condition for H/W reset.
- blank state in STB –mode) and then return to Default condition for H/W reset.
 (3) During Reset Complete Time, VMF value in OTP will be latched to internal register during this period. This loading is done every time when there is H/W reset complete time (tREST within 5ms after a rising edge of NRESET.
- (4) Spike Rejection also applies during a valid reset pulse as shown below:

(5) It is necessary to wait 5msec after releasing IRES before sending commands. Also STB Out

10 RELIABILITY

Test Item	Test Conditions	Note
High Temperature Operation	70±3°C , t=240 hrs	
Low Temperature Operation	-20±3°C , t=240 hrs	
High Temperature Storage	80±3°C , t=240 hrs	1,2
Low Temperature Storage	-30±3°C , t=240 hrs	1,2
Thermal Shock Test	-20°C ~ 25°C ~ 70°C 30 m in. 5 min. 30 min. (1 cycle) Total 5 cycle	1,2
Humidity Test	60 °C, Humidity 90%, 96 hrs	1,2
Vibration Test (Packing)	Sweep frequency : 10 ~ 55 ~ 10 Hz/1min Amplitude : 0.75mm Test direction : X.Y.Z/3 axis Duration : 30min/each axis	2

Note 1 : Condensation of water is not permitted on the module.

Note 2 : The module should be inspected after 1 hour storage in normal conditions (15-35°C, 45-65%RH).

Definitions of life end point :

- Current drain should be smaller than the specific value.
- Function of the module should be maintained.
- Appearance and display quality should not have degraded noticeably.
- Contrast ratio should be greater than 50% of the initial value.

11 USE PRECAUTIONS

11-1 Handling precautions

- 1) The polarizing plate may break easily so be careful when handling it. Do not touch, press or rub it with a hard-material tool like tweezers.
- 2) Do not touch the polarizing plate surface with bare hands so as not to make it dirty. If the surface or other related part of the polarizing plate is dirty, soak a soft cotton cloth or chamois leather in benzine and wipe off with it. Do not use chemical liquids such as acetone, toluene and isopropyl alcohol. Failure to do so may bring chemical reaction phenomena and deteriorations.
- 3) Remove any spit or water immediately. If it is left for hours, the suffered part may deform or decolorize.
- 4) If the LCD element breaks and any LC stuff leaks, do not suck or lick it. Also if LC stuff is stuck on your skin or clothing, wash thoroughly with soap and water immediately.

11-2 Installing precautions

- 1) The PCB has many ICs that may be damaged easily by static electricity. To prevent breaking by static electricity from the human body and clothing, earth the human body properly using the high resistance and discharge static electricity during the operation. In this case, however, the resistance value should be approx. $1M\Omega$ and the resistance should be placed near the human body rather than the ground surface. When the indoor space is dry, static electricity may occur easily so be careful. We recommend the indoor space should be kept with humidity of 60% or more. When a soldering iron or other similar tool is used for assembly, be sure to earth it.
- 2) When installing the module and ICs, do not bend or twist them. Failure to do so may crack LC element and cause circuit failure.
- 3) To protect LC element, especially polarizing plate, use a transparent protective plate (e.g., acrylic plate, glass etc) for the product case.
- 4) Do not use an adhesive like a both-side adhesive tape to make LCD surface (polarizing plate) and product case stick together. Failure to do so may cause the polarizing plate to peel off.

11-3 Storage precautions

- Avoid a high temperature and humidity area. Keep the temperature between 0°C and 35°C and also the humidity under 60%.
- 2) Choose the dark spaces where the product is not exposed to direct sunlight or fluorescent light.
- 3) Store the products as they are put in the boxes provided from us or in the same conditions as we recommend.
- 11-4 Operating precautions
- Do not boost the applied drive voltage abnormally. Failure to do so may break ICs. When applying power voltage, check the electrical features beforehand and be careful. Always turn off the power to the LC module controller before removing or inserting the LC module input connector. If the input connector is removed or inserted while the power is turned on, the LC module internal circuit may break.
- 2) The display response may be late if the operating temperature is under the normal standard, and the display may be out of order if it is above the normal standard. But this is not a failure; this will be restored if it is within the normal standard.
- 3) The LCD contrast varies depending on the visual angle, ambient temperature, power voltage etc. Obtain the optimum contrast by adjusting the LC dive voltage.
- 4) When carrying out the test, do not take the module out of the low-temperature space suddenly. Failure to do so will cause the module condensing, leading to malfunctions.
- 5) Make certain that each signal noise level is within the standard (L level: 0.2Vdd or less and H level: 0.8Vdd or more) even if the module has functioned properly. If it is beyond the standard, the module may often malfunction. In addition, always connect the module when making noise level measurements.
- 6) The CMOS ICs are incorporated in the module and the pull-up and pull-down function is not adopted for the input so avoid putting the input signal open while the power is ON.
- 7) The characteristic of the semiconductor element changes when it is exposed to light emissions, therefore ICs on the LCD may malfunction if they receive light emissions. To prevent these malfunctions, design and assemble ICs so that they are shielded from light emissions.
- 8) Crosstalk occurs because of characteristics of the LCD. In general, crosstalk

occurs when the regularized display is maintained. Also, crosstalk is affected by the LC drive voltage. Design the contents of the display, considering crosstalk.

11-5 Other

- 1) Do not disassemble or take the LC module into pieces. The LC modules once disassembled or taken into pieces are not the guarantee articles.
- 2) The residual image may exist if the same display pattern is shown for hours. This residual image, however, disappears when another display pattern is shown or the drive is interrupted and left for a while. But this is not a problem on reliability.
- 3) AMIPRE will provide one years warrantee for all products and three months warrantee for all repairing products.

12 MECHANICAL DRAWING

Date : 2015/07/06